Revisitando el problema de Wigner: la irrazonable eficacia de las matemáticas en las ciencias naturales

Authors

  • Leonardo Segura Universidad de Valparaíso

DOI:

https://doi.org/10.22370/sst.2025.10.4912

Keywords:

Wigner’s enigma, applicability of mathematics, laws of nature, efficacy of mathematics, philosophy of science

Abstract

This paper examines the unreasonable e↵ectiveness of mathematics in the natural sciences according to Eugene Wigner’s influential essay, focusing the discussion on contemporary clarifications of this philosophical problematic. The analysis concentrates on how mathematics, despite having been developed without a specific physical purpose, turns out to be an e↵ective tool in the formulation of physical theories. In addition, the clarifications proposed by contemporary philosophers of Wigner’s argumentation to avoid misunderstandings in the interpretation of the enigma are exposed, addressing the main criticisms and reinterpretations that have arisen since the original publication of his essay. In this sense, through the concrete example of the simple harmonic oscillator, it illustrates how abstract mathematical concepts find a place of application in the physical realm. The aim of the essay is to o↵er a detailed and accessible explanation of the issue, focusing on highlighting the continuing importance of this problem in contemporary philosophy and its impact on the modern understanding of the natural sciences.

References

Bangu, S. (2012). The Applicability of Mathematics in Science: Indispensability and Ontology. London: Palgrave Macmillan.

Bangu, S. (2016). On ‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’. En E. Ippoliti, F. Sterpetti, & T. Nickles (eds.), Models and Inferences in Science (pp. 11-29). Cham: Springer.

Bangu, S., & Moir, R. (2018). The ‘Miracle’ of Applicability? The Curious Case of the Simple Harmonic Oscillator. Foundations of Physics, 48(9), pp. 507-525. https://doi.org/10.1007/s10701-018-0152-5.

Frigg, R., & Nguyen, J. (2017). Models and representation. En L. Magnani, & T. Bertolotti (eds.), Handbook of Model-Based Science (pp. 49-102). Dordrecht: Springer.

Steiner, M. (1989). The Application of Mathematics to Natural Science. The Journal of Philosophy, 86(9) , pp. 449-480. https://doi.org/10.2307/2026759.

Steiner, M. (1995). The Applicabilities of Mathematics. Philosophia Mathematica, 3(2), pp. 129–156. https://doi.org/10.1093/philmat/3.2.129.

Steiner, M. (1998). The Applicability of Mathematics as a Philosophical Problem. Cambridge: Cambridge University Press.

Wigner, E. (1960). The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications in Pure and Applied Mathematics, 13(1), pp. 1-9. https://doi.org/10.1002/cpa.3160130102.

Published

2025-04-08

How to Cite

Segura, L. (2025). Revisitando el problema de Wigner: la irrazonable eficacia de las matemáticas en las ciencias naturales. Serie Selección De Textos , 10, 263–275. https://doi.org/10.22370/sst.2025.10.4912